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1 Project Overview

The intricate interactions between data sampling, model selection and the inherent
randomness in complex systems strongly emphasize the need for a rigorous charac-
terization of ML algorithms. In conventional statistics, uncertainty quantification
(UQ) provides this characterization by measuring how accurately a model reflects
the physical reality and by studying the impact of different error sources on the pre-
diction. Consequently, there is a strong need to utilize prediction uncertainties in
deep models to shed light onto when and how much to trust the predictions. These
uncertainty estimates can also be used for enabling safe ML practice, e.g., identi-
fying out-of-distribution samples, detecting anomalies/outliers, delegating high-risk
predictions to experts, defending against adversarial attacks etc.

Broadly, a rigorous statistical characterization of ML systems will enable us to:

build reliable models — consistency between predictions and our understanding
of the world.

incorporate real-world priors.

avoid machines from being overly confident even when making mistakes.
identify regimes of strengths and weaknesses.

design human-in-the-loop systems.

In this project, we have made crucial advances to the fundamental problem of reliably
and scalably estimating uncertainties in deep neural networks [1, 2]. In addition
to designing state-of-the-art UQ estimation methods, we also made an important
finding that the notion of prediction calibration can be used to design new loss
functions for optimizing deep neural networks and obtained significantly improved
models in scientific problems [3, 4, 5, 6]. Finally, we explored novel applications of
uncertainties in inverse modeling [7], active learning [8], transferring models under
distribution shifts [9] and achieving robustness to adversarial attacks [10]. Results
from this project were recently covered as a feature article [11] and discussed in a
DataSkeptic podcast [12].

2 Designing Deep Uncertainty Estimators

A natural strategy to produce calibrated predictors is to directly optimize for predic-
tion intervals that satisfy the calibration objective. For example, in the heteroscedas-
tic regression approach, the variance estimates are obtained using the Gaussian likeli-
hood objective, under a heteroscedastic prior assumption. However, by not explicitly
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constructing the intervals based on epistemic (model variability) or aleatoric (inher-
ent stochasticity) uncertainties, it is not straightforward to interpret the variances
from a heteroscedastic model, even when they are well calibrated. On the other
hand, approaches designed to capture specific sources of uncertainties, e.g. Monte
Carlo dropout for epistemic or conditional quantile based aleatoric uncertainties, are
found to be poorly calibrated in practice. Hence, a typical workaround is to em-
ploy a separate recalibration step that adjusts the estimates from a trained model
to achieve calibration. However, it has been found that even uninformative (ran-
dom) interval estimates can be effectively recalibrated, thus rendering the estimates
meaningless for subsequent analysis.

2.1 Obtaining Calibrated Uncertainties
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Figure 1: (a) Regression: While dropout-based methods are highly optimistic (very
sharp intervals), Bayesian neural nets are often pessimistic and both are poorly
calibrated. In comparison, our approach is well calibrated. (b) Time-series fore-
casting: Prediction intervals are critical in forecasting and our uncertainty matching
technique produces meaningful intervals. (¢) Object Localization: In vision tasks,
the intervals need to be semantically meaningful for easy interpretation.

In our recent paper [1], we conjectured that one can reliably build calibrated deep
models by posing calibration as an auxiliary task and utilizing a novel uncertainty
matching strategy. To this end, our approach employs two separate models — one for
predicting the target and the other for estimating the prediction intervals, and pose
a bi-level optimization formulation that allows the mean estimator to identify predic-
tion uncertainties that are the most informative for matching the intervals from the
interval estimator. Experiments with different use-cases and model architectures,
including regression with FCNs, time-series forecasting with LSTMs and object lo-
calization with CNNs, show that our approach consistently produces well calibrated
uncertainties (both epistemic/aleatoric) and improved generalization (Figure 1).
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2.2 Heteroscedastic Calibration
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Figure 2: (a) Heteroscedastic calibration is a generic technique that can be
applied to any existing uncertainty estimation to produce calibrated prediction in-
tervals; (b) In the case of MC dropout, the resulting estimators are fairly well cali-
brated under a wide-range of dropout rates; (c) With both epistemic and aleatoric
uncertainty estimation, our approach ourperforms existing methods.

Though a large class of methods exists for measuring deep uncertainties, in practice,
the resulting estimates are found to be poorly calibrated, thus making it challeng-
ing to translate them into actionable insights. In [2] we proposed to repurpose
the heteroscedastic regression objective as a surrogate for calibration, and enable
any existing uncertainty estimator to produce inherently calibrated intervals. In
other words, with this single-shot calibration approach, the uncertainty estimates
are used in lieu of the heteroscedastic variances to compute the Gaussian likeli-
hood. By performing calibration automatically in the training process based on an
explicit uncertainty estimator, our approach does not suffer the limitations of re-
calibration methods and can be associated to specific error sources unlike classical
heteroscedastic networks. Surprisingly, as showed in Figure 2, our approach is able
to achieve significantly improved calibration with both an epistemic (MC dropout)
and an aleatoric (quantile-based) uncertainty estimator, though they are known to
be produce miscalibrated intervals.

2.3 Application: History Matching with Black-box Simula-
tors

In a wide-range of applications in science and engineering, one often faces the need
to learn complex mappings between independent parameters and dependent/mea-
sured quantities, i.e. the forward and inverse mappings. Building reliable inverse
maps characterizing the conditional posteriors is challenging since in practice the
mapping is seldom bijective, and it is challenging to incorporate scientific priors into
the learning process. In [7], we showed that enforcing self-consistency between for-
ward and inverse models is an effective regularizer for learning predictive models in
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Figure 3: Proposed training strategies for building deep inverse models in history
matching. In both approaches, we incorporate epistemic uncertainty estimation and
optimize using a heteroscedastic calibration strategy.

scientific applications. In particular, we developed two different strategies to enforce
self-consistency, namely cylical and coupled training methods (Figure 3). While im-
plementing both approaches, we incorporated epistemic uncertainty estimation and
optimized the model parameters using the heteroscedastic calibration strategy from
the previous section.

3 Calibration-Driven Learning

Building functional relationships between a collection of observed input variables
x = TXqy; ; X4g and a response variable y is a central problem in scientific appli-
cations — examples range from estimating the future state of a molecular dynamics
simulation to searching for exotic particles in high-energy physics and detecting the
likelihood of disease progression in a patient. Emulating complex scientific processes
using computationally efficient predictive models can achieve significant speed-ups
over traditional numerical simulators or conducting actual experiments, and more
importantly provides surrogates for improving the subsequent analysis steps such as
inverse modeling, experiment design, etc. Commonly referred to as supervised learn-
ing in the machine learning literature, the goal here is to infer the function f : x @ y
using a training sample (x;;y;)gl,, such that the expected discrepancy between
y and F(x), typically measured using a loss function L(y; f(x)), is minimized over
the joint distribution p(x;y). Despite the importance of L in determining the fi-
delity of f, in practice, simple metrics, such as the “;-metric, jjy — f(x)jjz, are used,
mostly for convenience but also due to lack of priors on the distribution of residuals.
However, this disregards the inherent characteristics of the training data and more
importantly the fact that choosing a metric implicitly defines a prior for n. Yet
appropriately accounting for noise is crucial to robustly estimate ¥ and to create
high-fidelity predictions for unseen data. However, this assumption can be easily
violated in real-world data. For example, the “, metric is known to be susceptible
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Figure 4. Comparing LbC with ", using a synthetic example with a non-linear
function. While ", is found to be highly e ective when there is no noise in the data
and the underlying noise process in Gaussian, LbC is consistently superior when
there are outliers or asymmetric noise components in the data.

to outliers.

3.1 Learn by Calibrating

As part of this project [3, 5], we have developed Learn-by-Calibrating (LbC), a non-
parametric approach based on interval calibration for building emulators in scienti ¢
applications, that are e ective even with heterogeneous data and are robust to out-
liers. Though calibration has been conventionally used for evaluating and correcting
uncertainty estimators, this paper advocates for utilizing calibration as a training
objective in regression models. More speci cally, LbC uses two separate modules,
implemented as neural networks, to produce point estimates and intervals respec-
tively for the response variable, and poses a bi-level optimization problem to solve
for the parameters of both the networks. This eliminates the need to construct pri-
ors on the expected residual structure and makes it applicable to both homogeneous
and heterogeneous data. Figure 4 provides an illustration of a simple D regression
experiment using a single layer neural network with 100 neurons and ReLU (recti-
ed linear units) non-linear activation. We nd that LbC is consistently superior

to the widely adopted ", loss function, under both symmetric and asymmetric noise
models, as well as in the presence of outliers.



